Abstract

In many metallurgical applications, an accurate knowledge of miscibility gaps and spinodal decompositions is highly desirable. Some binary systems where the main constituents of the same crystal structures have similar lattice parameters (less than 15% difference) reveal a composition, temperature shift of the miscibility gap due to lattice coherency. So far, the well-known Cahn's approach is the only available calculation method to estimate the coherent solid state phase equilibria. Nevertheless, this approach shows some limitations, in particular it fails to predict accurately the evolution of phase equilibria for large deformation, i.e. the large lattice parameter difference (more than 5%). The aim of this study is to propose an alternative approach to overcome the limits of Cahn's method. The elastic contribution to the Gibbs energy, representing the elastic energy stored in the coherent boundary, is formulated based on the linear elasticity theory. The expression of the molar elastic energy corresponding to the coherency along both directions [100] and [111] has been formulated in the small and large deformation regimes. Several case studies have been examined in cubic systems, and the proposed formalism is showing an appropriate predictive capability, making it a serious alternative to the Cahn's method. The present formulation is applied to predict phase equilibria evolution of systems under other stresses rather than only those induced by the lattice mismatch.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.