Abstract

The generation, propagation, and detection of high-quality and coherently superimposed optical vortices, carrying two or more orbital angular momentum (OAM) states, is experimentally demonstrated using an optical arrangement based on spatial light modulators. We compare our results with numerical simulations and show that, in the context of turbulence-free wireless optical communication (indoor or satellite), individual OAM state identification at the receiver of an OAM-modulated system can be achieved with good precision, to accommodate for high-dimensional OAM modulation architectures. We apply our results to the simulation of a communication system using low-density parity-check-coded modulation that considers optimal signal constellation design in a channel that includes OAM crosstalk induced by realistic (imperfect) detection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.