Abstract

Long-cavity colorless laser diodes with different front-facet antireflection (AR) coatings are employed to perform the wavelength injection-locked ON–OFF-keying (OOK) data transmission. By changing front-facet reflectance of laser diode from 0.2% to 1.2%, the received OOK data enhance its Q factor by 6.3% and reduces its bit error rate (BER) by more than two orders of magnitude, which benefits from the improved signal-to-noise ratio and extinction ratio by up to 8.0%. Enlarging the injection-locking power from –6 to –3 dBm essentially helps the long-cavity colorless laser diode to promote its receiving power sensitivity from –27.9 to –29.2 dBm at BER of 10 <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$^{-9}$</tex></formula> . However, the similar device with lower AR reflectance shows an opposite trend. The injection-locking-induced enhancement is limited within a frequency region controlled by the injection power, which results from a large disparity between continuous-wave injection and stimulated emission inside the long-cavity colorless laser diode. At same biased current and front-facet reflectance, a higher injection level provides a larger modulation throughput at a cost of decreasing bandwidth. The overinjection causes a limitation on frequency bandwidth of the long-cavity colorless laser diodes with lower front-facet reflectance. The numerical simulations with modified rate equations for the injection-locked long-cavity colorless laser diode with lower front-facet reflectance also elucidate that the transmission degrades distinctly at larger injection powers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.