Abstract
Periodic structures, such as gratings and grids, are required in a variety of applications including spectroscopy, photonic and phononic devices, and as substrates for basic studies in materials science. Interference lithography readily forms periodic patterns in photoresist, but conventional approaches, using a Lloyd’s mirror or Mach–Zehnder configuration, suffer from a number of shortcomings including difficulty in aligning patterns with respect to pre-existing structures on a substrate and difficulty in precisely repeating a given spatial period. Coherent diffraction lithography (CDL), a mask-based approach, utilizes the well-known Talbot effect to accurately replicate the one- or two-dimentional pattern on a mask by reimaging the mask pattern in photoresist. Moreover, with appropriate alignment marks on the mask, one can align the replicated pattern relative to pre-existing patterns on the substrate. The authors describe the design, construction, and utilization of a dedicated CDL apparatus that permits replication, at a well-defined mask-substrate gap, of the periodic structure of a phase mask. The system also incorporates interferometric-spatial-phase imaging for aligning the replicated pattern relative to fixed fiducials on a substrate. They obtained high quality replications of a mask pattern, consisting of a 600 nm period grating, from the 1st to the 52nd plane of reimaging, i.e., from 1.55 to 40.16 μm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.