Abstract

Quantum coherence constitutes a foundational characteristic of quantum mechanics and is integral to emerging quantum resource theories. However, quantum coherence is severely restricted by environmental noise in general quantum processing, indicated by the loss of information of a quantum system. Such processing can be described by the trade-offs between the coherence and the mixedness. Based on the l 2 norm coherence, conditional von Neumann entropy and Wigner–Yanase skew information, we derive basis-independent constraints on the attainable quantum coherence imposed by the mixedness of a quantum state, which generalize the prior basis-dependent relations, provide fundamental insights into the latent coherence resources present within arbitrary quantum systems that undergo decoherence and quantify the inherent limits on extractable coherence imposed by environmental noise.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.