Abstract

Previous studies have demonstrated that successful listening with advanced signal processing in digital hearing aids is associated with individual cognitive capacity, particularly working memory capacity (WMC). This study aimed to examine the relationship between cognitive abilities (cognitive processing speed and WMC) and individual listeners’ responses to digital signal processing settings in adverse listening conditions. A total of 194 native Swedish speakers (83 women and 111 men), aged 33–80 years (mean = 60.75 years, SD = 8.89), with bilateral, symmetrical mild to moderate sensorineural hearing loss who had completed a lexical decision speed test (measuring cognitive processing speed) and semantic word-pair span test (SWPST, capturing WMC) participated in this study. The Hagerman test (capturing speech recognition in noise) was conducted using an experimental hearing aid with three digital signal processing settings: (1) linear amplification without noise reduction (NoP), (2) linear amplification with noise reduction (NR), and (3) non-linear amplification without NR (“fast-acting compression”). The results showed that cognitive processing speed was a better predictor of speech intelligibility in noise, regardless of the types of signal processing algorithms used. That is, there was a stronger association between cognitive processing speed and NR outcomes and fast-acting compression outcomes (in steady state noise). We observed a weaker relationship between working memory and NR, but WMC did not relate to fast-acting compression. WMC was a relatively weaker predictor of speech intelligibility in noise. These findings might have been different if the participants had been provided with training and or allowed to acclimatize to binary masking noise reduction or fast-acting compression.

Highlights

  • Hearing-impaired individuals often show increased difficulties recognizing speech under adverse listening conditions, including noise and reverberant or distorted speech, even when wearing hearing aids (Committee on Hearing, Bioacoustics, and Biomechanics [CHABA], 1988; Akeroyd, 2008; Larsby et al, 2008; Souza and Arehart, 2015)

  • Lower signal-to-noise ratios (SNRs) scores means better speech recognition performance because low SNR shows that the participants correctly identified the speech signal despite a high level of background noise, while high SNR scores indicate that the sentences could only be correctly repeated at low noise levels (Hagerman and Kinnefors, 1995)

  • This is consistent with previous studies that indicate that there was an age-related decline in speech recognition in adverse listening in older adults compared to younger listeners (Larsby et al, 2008; GordonSalant and Cole, 2016)

Read more

Summary

Introduction

Hearing-impaired individuals often show increased difficulties recognizing speech under adverse listening conditions, including noise and reverberant or distorted speech, even when wearing hearing aids (Committee on Hearing, Bioacoustics, and Biomechanics [CHABA], 1988; Akeroyd, 2008; Larsby et al, 2008; Souza and Arehart, 2015). Cognition and Speech Recognition the consequences of hearing aid signal processing, whether in regard to the distortions caused by the effects of background noise or the unwanted artifacts from certain digital signal processing algorithms (e.g., fast-acting compression; Lunner, 2003; Souza and Arehart, 2015). These consequences may lead to benefits of signal processing in the hearing aid that are less than expected. The present study used a binary masking noise reduction algorithm as a processing condition (Boldt et al, 2008), rather than a non-ideal estimation of noise reduction

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.