Abstract

Trans-dominant negative mutants of the human immunodeficiency virus type 1 (HIV-1) regulatory protein Rev inhibit the function of wild-type Rev in a dose-dependent manner. This was previously shown to be caused by nuclear retention of the wild-type protein. In the present work, further analysis of the trans-dominant negative effect was performed using cotransfection experiments with different constructs encoding HIV-1 Rev and viral structural proteins together with a plasmid encoding a trans-dominant negative Rev mutant. Thus, one species of pre-mRNA was transcribed from the reporter plasmids. This pre-mRNA was then either spliced or exported by Rev as unspliced RNA for translation of the HIV structural proteins. An immunofluorescence assay and Western blot analysis were used for analysis of protein expression. In situ hybridization was applied for labelling of unspliced mRNA in transfected cells, and RNase protection analysis was used to determine the relative amount of unspliced versus spliced mRNAs. The experiments confirmed that the transdominant negative mutant inhibited nuclear export of unspliced mRNA. It was, in addition, demonstrated for the first time that the trans-dominant negative mutant also affected a Rev-dependent regulatory step connected with viral pre-mRNA splicing. As a consequence, proteins expressed from unspliced and singly spliced HIV mRNAs decreased while there was an increase in protein products encoded by spliced and alternatively spliced mRNAs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.