Abstract

Neurons are regarded as basic, structural and functional units of the central nervous system. They play an active role in the collection, storing and transferring of the information during signal processing in the brain. In this paper, we investigate the dynamics of a model of a 4D autonomous Hopfield neural network (HNN). Our analyses highlight complex phenomena such as chaotic oscillations, periodic windows, hysteretic dynamics, the coexistence of bifurcations and bursting oscillations. More importantly, it has been found several sets of synaptic weight for which the proposed HNN displays multiple coexisting stable states including three disconnected attractors. Besides the phenomenon of coexistence of attractors, the bursting phenomenon characterized by homoclinic/Hopf cycle–cycle bursting via homoclinic/fold hysteresis loop is observed. This contribution represents the first case where the later phenomenon (bursting oscillations) occurs in an autonomous HNN. Also, PSpice simulations are used to support the results of the previous analyses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.