Abstract

Fibromyalgia (FM) is a disorder characterized by widespread chronic pain as core symptom and a broad range of comorbidities. Despite the prevalence of gastrointestinal (GI) comorbidities in patients with FM, GI functions have rarely been investigated in animal models of FM. The purpose of the present study is to investigate the coexistence of alterations of GI function in the reserpine-induced myalgia (RIM) rat, a validated FM model associated with disruption of monoamine system. Paw withdrawal threshold (von Frey hair test) was assessed as pain-associated indicator. Gastric emptying (13C breath test), small intestinal transit (charcoal meal test), and fecal water content were investigated as GI functions. The specific regimen of reserpine for the RIM rat, i.e., 1mg/kgs.c., once daily for three consecutive days, caused a reduction of paw withdrawal threshold (i.e., mechanical allodynia) on days 3, 5, and 7 after the first injection. The 13CO2 excreted from the RIM rat was significantly increased on day 7. The RIM rat exhibited an acceleration of small intestinal transit on day 5. Fecal water content collected from the RIM rat was significantly increased on days 3 and 5. The amount of noradrenaline was significantly decreased in GI tissues on days 3, 5, and 7 in the RIM rat. Conclusions This study revealed that accelerated gastric emptying, accelerated small intestinal transit, and increase in fecal water content coexist with mechanical allodynia in the RIM rat, simulating the coexistence of chronic pain and alterations of GI function in patients with FM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.