Abstract

We propose a new Eulerian-Lagrangian approach to simulate the various surface tension phenomena characterized by volume, thin sheets, thin filaments, and points using Moving-Least-Squares (MLS) particles. At the center of our approach is a meshless Lagrangian description of the different types of codimensional geometries and their transitions using an MLS approximation. In particular, we differentiate the codimension-1 and codimension-2 geometries on Lagrangian MLS particles to precisely describe the evolution of thin sheets and filaments, and we discretize the codimension-0 operators on a background Cartesian grid for efficient volumetric processing. Physical forces including surface tension and pressure across different codimensions are coupled in a monolithic manner by solving one single linear system to evolve the surface-tension driven Navier-Stokes system in a complex non-manifold space. The codimensional transitions are handled explicitly by tracking a codimension number stored on each particle, which replaces the tedious meshing operators in a conventional mesh-based approach. Using the proposed framework, we simulate a broad array of visually appealing surface tension phenomena, including the fluid chain, bell, polygon, catenoid, and dripping, to demonstrate the efficacy of our approach in capturing the complex fluid characteristics with mixed codimensions, in a robust, versatile, and connectivity-free manner.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.