Abstract

Let K be a field of characteristic zero. We study the asymptotic behavior of the codimensions for polynomial identities of representations of Lie algebras, also called weak identities. These identities are related to pairs of the form (A, L) where A is an associative enveloping algebra for the Lie algebra L. First we obtain a characterization of ideals of weak identities with polynomial growth of the codimensions in terms of their cocharacter sequence. Moreover we obtain examples of pairs that generate varieties of pairs of almost polynomial growth. Second we show that any variety of pairs of associative type is generated by the Grassmann envelope of a finitely generated superpair. As a corollary we obtain that any special variety of pairs which does not contain pairs of type (R, sl2), consists of pairs with a solvable Lie algebra. Here sl2 denotes the Lie algebra of the 2 × 2 traceless matrices. Finally we give an example of a pair that contradicts a conjecture due to Amitsur.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.