Abstract

Spectral imaging holds great promise for the non-invasive diagnosis of retinal diseases. However, to acquire a spectral datacube, conventional spectral cameras require extensive scanning, leading to a prolonged acquisition. Therefore, they are inapplicable to retinal imaging because of the rapid eye movement. To address this problem, we built a coded aperture snapshot spectral imaging fundus camera, which captures a large-sized spectral datacube in a single exposure. Moreover, to reconstruct a high-resolution image, we developed a robust deep unfolding algorithm using a state-of-the-art spectral transformer in the denoising network. We demonstrated the performance of the system through various experiments, including imaging standard targets, utilizing an eye phantom, and conducting in vivo imaging of the human retina.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.