Abstract
Consider the coradical filtrations of the Hopf algebras of planar binary trees of Loday and Ronco and of permutations of Malvenuto and Reutenauer. We give explicit isomorphisms showing that the associated graded Hopf algebras are dual to the cocommutative Hopf algebras introduced in the late 1980's by Grossman and Larson. These Hopf algebras are constructed from ordered trees and heap-ordered trees, respectively. These results follow from the fact that whenever one starts from a Hopf algebra that is a cofree graded coalgebra, the associated graded Hopf algebra is a shuffle Hopf algebra.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.