Abstract

The optical and electron paramagnetic resonance (EPR) spectroscopic properties of a transferrin from the cockroach Blaberus discoidalis have been investigated to determine the relation of this protein to vertebrate transferrins. Difference spectrophotometry substantiates the involvement of tyrosyl residues in iron binding, and confirms the specific binding of two equivalents of iron per molecule. The far-UV CD spectrum also indicates a secondary structure with marked similarity to those of vertebrate transferrins. EPR studies show a dependence of iron binding on (bi)carbonate, consistent with the absolute requirement of transferrins for a synergistic anion in binding iron. Continuous wave (CW) and pulsed EPR studies of the cupric complex of the protein implicate a histidyl nitrogen ligand in metal coordination, as in human transferrin. Additional studies establish that the pH-dependent release of iron is similar to that of human serum transferrin. The present data confirm cockroach transferrin as an authentic member of the transferrin superfamily, thereby suggesting an ancestral relationship of insect to vertebrate transferrins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.