Abstract

In biological phenomena like osmosis, the rate of flow of water molecules in or out of biological compartments depends on the solute concentration and on other forces, like hydrostatic pressure. A similar example is the passive transport of ions in and out the cell membrane. In this paper, we address the problem of faithfully modelling these kind of phenomena with an adequate process calculus. We enhance the ambient calculus stochastic semantics with functional rates, which are calculated by taking into account the volume of ambients and the surrounding environment. A model of osmosis in plant cells will be used as an example to show the new features of our calculus.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.