Abstract

Bacterial infection is the primary cause of delayed wound healing. Infected wounds suffer from a series of harmful factors in the harsh wound microenvironment (WME), greatly damaging their potential for tissue regeneration. Herein, a novel probiotic biofilm-based antibacterial strategy is proposed through experimentation. Firstly, a series of coaxial polycaprolactone (PCL) / silk fibroin (SF) nanofiber films (termed as PSN-n, n = 0.5, 1.0, 1.5, and 2.0, respectively) are prepared by coaxial electrospinning and their physiochemical properties are comprehensively characterized. Afterward, the PSN-1.5 is selected and co-cultured with L. paracasei to allow the formation of probiotic biofilm. The probiotic biofilm-loaded PSN-1.5 nanofiber film (termed as PSNL-1.5) exhibits relatively good broad-spectrum antibacterial activity, biocompatibility, and enhanced pro-regenerative capability by immunoregulation of M2 macrophage. A wound healing assay is performed using an S. aureus-infected skin defect model. The application effect of PSNL-1.5 is significantly better than that of a commercial nano‑silver burn & scald dressing (Anson®), revealing huge potential for clinical translation. This study is of significant novelty in demonstrating the antibacterial and pro-regenerative abilities of probiotic biofilms. The product of this study will be extensively used for treating infected wounds or other wounds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.