Abstract

We have collected and cleaned two network data sets: Coauthorship and Citation networks for statisticians. The data sets are based on all research papers published in four of the top journals in statistics from $2003$ to the first half of $2012$. We analyze the data sets from many different perspectives, focusing on (a) centrality, (b) community structures, and (c) productivity, patterns and trends. For (a), we have identified the most prolific/collaborative/highly cited authors. We have also identified a handful of "hot" papers, suggesting "Variable Selection" as one of the "hot" areas. For (b), we have identified about $15$ meaningful communities or research groups, including large-size ones such as "Spatial Statistics", "Large-Scale Multiple Testing", "Variable Selection" as well as small-size ones such as "Dimensional Reduction", "Objective Bayes", "Quantile Regression", and "Theoretical Machine Learning". For (c), we find that over the 10-year period, both the average number of papers per author and the fraction of self citations have been decreasing, but the proportion of distant citations has been increasing. These suggest that the statistics community has become increasingly more collaborative, competitive, and globalized. Our findings shed light on research habits, trends, and topological patterns of statisticians. The data sets provide a fertile ground for future researches on or related to social networks of statisticians.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.