Abstract

We present a coating process to reduce the diffusion of alkali and alkaline earth metals from glass surfaces into aqueous solutions. Our approach is based on the treatment of the glass with (i) (3-aminopropyl)triethoxysilane (APTES) in the first step and (ii) titanium-isopropylate in the second step. The coated glass substrates were characterized using UV/VIS, FTIR, and SEM/EDX analyses as well as water contact angle measurements. Furthermore, the influence of the different coating parameters on the hydrolytic resistance, determined using HCl titration, was investigated. Our results show that with the help of the novel two-step procedure the hydrolytic class of “Type III” glass materials can be increased to “Type II” glass materials according to ISO specification 4802-1:1988 (E).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.