Abstract

We study a Newtonian viscous liquid coating a vertical rotating disk in the creeping flow regime. Experiments were performed at varying disk rotation speeds and liquid volumes, and the thickness profile at steady state was measured. While the maximum liquid supported by the rotating disk varied with rotation rate and liquid viscosity, the numerical value of a dimensionless number signifying the ratio of gravity to viscous forces was the same in all the cases, γ=0.30. A lubrication analysis for the time evolution of the film thickness that accounted for gravity, surface tension, and viscous forces was solved numerically to steady state. The predicted thickness profiles are in quantitative agreement with those obtained experimentally. The lubrication equation at steady state was solved analytically in the absence of surface tension to obtain constant height contours that were circular and symmetric about the horizontal axis. However to obtain a complete solution, knowledge of the height variation across the contours is required, and this is controlled by the surface tension. On including this effect, we derived an asymptotic solution to predict thickness profiles that agree well with measurements for large values of viscosity or rotation rates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.