Abstract

Abstract A simple, uniformly stratified, linear model is developed to examine the effects on upwelling and internal Kelvin wave propagation of small, slow, longshore varying topography and coastline. The condition of no normal flow at the bottom yields correction terms with responses that propagate as Kelvin waves. For the first problem considered, a uniform wind stress is turned on abruptly. The response is fully three-dimensional with a zone of upwelling (downwelling) to the south of a ridge (canyon) near the shore. As time passes, the zone moves poleward and becomes centered over the topography. A complicated cyclonic and anticyclonic circulation is associated with a shoreward (seaward) flow over the ridge (canyon). If the basic state (i.e., the flow in the absence of topography) had no poleward undercurrent, the sign of the response is altered. The second problem considered the modification of an internal Kelvin wave by isolated topography. Energy is scattered into all vertical modes (i.e., the natura...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.