Abstract
Solid-state nanopores provide a direct means to detect and analyze DNA and proteins. In a typical setup, the DNA molecules travel through a nanopore under electrophoretic voltage bias. The nanopore is sandwiched between two chambers that are filled with ionic solution. A major challenge in using solid-state nanopores for DNA sequencing and gene detection is to improve their selectivity and detection sensitivity. To achieve these goals, one solution is to functionalize the nanopores by chemically modifying the pore walls with silanes or nucleic acids. However, little is known about molecular interactions in functionalized nanopores. This paper presents DNA translocation dynamics and the mechanism of DNA sequencing in a functionalized nanopore through a coarse-grained molecular dynamics model. The DNA nucleotide is coarse-grained into two interaction sites: one site corresponds to the base group and the other encompasses the phosphate and sugar groups. The water molecules are included in the model implicitly through Langevin dynamics. The coarse-grained model immensely improves the computational efficiency while still capturing the essential translocation dynamics. The model characterizes important physical properties of functionalized nanopores such as the effective pore diameter and effect of biasing voltage on the DNA translocation dynamics. The model reveals a nonlinear relationship between translocation speed of DNA and applied voltage. Moreover, DNA translocation in nanopores functionalized with hairpin-loop (HPL) DNA and single-stranded DNA (ss-DNA) shows significant differences: a target DNA is found to translocate through a ss-DNA coated nanopore 9 times faster than through an HPL coated one at a bias of 100 mV, putatively from lower stiffness of ss-DNA than that for HPL. The DNA translocation speed is also largely influenced by interaction potential between the DNA and surface-tethered molecules. The results reveal that such selective translocation, distinctly different translocation dynamics of target DNA molecules largely stem from the flexibility and orientation of the surface-tethered molecules. These findings can significantly impact the rational design of DNA transport experiments leading to rapid molecule-level diagnostics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.