Abstract

Self-assembly of polyethylene glycol (PEG)-grafted lipids at different sizes and concentrations was simulated using the MARTINI coarse-grained (CG) force field. The interactions between CG PEG and CG dipalmitoylglycerophosphocholine (DPPC)-lipids were parametrized by matching densities of 19-mers of PEG and polyethylene oxide (PEO) grafted to the bilayer from all-atom simulations. Mixtures of lipids and PEG-grafted (M(w) = 550, 1250, and 2000) lipids in water self-assembled to liposomes, bicelles, and micelles at different ratios of lipids and PEGylated lipids. Average aggregate sizes decrease with increasing PEGylated-lipid concentration, in qualitative agreement with experiment. PEGylated lipids concentrate at the rims of bicelles, rather than at the planar surfaces; this also agrees with experiment, though the degree of segregation is less than that assumed in previous modeling of the experimental data. Charged lipids without PEG evenly distribute at the rim and planar surfaces of the bicelle. The average end-to-end distances of the PEG on the PEGylated lipids are comparable in liposomes, bicelles (edge or planar surface), and micelles and only slightly larger than for an isolated PEG in solution. The ability of PEGylated lipids to induce the membrane curvature by the bulky headgroup with larger PEG, and thereby modulate the phase behavior and size of lipid assemblies, arises from their relative concentration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.