Abstract

This paper presents parallel algorithms for computing multi-dimensional wavelet transforms on both shared memory and distributed memory machines. Traditional data partitioning methods for n-dimensional Discrete Wavelet Transforms (DWTs) call for data redistribution once a one dimensional wavelet transform is computed along each dimension. To avoid the data communication inherent in this redistribution, two new partitioning methods called CRBP (Communication Reduced Block Partitioning) and CRLP (Communication Reduced Layer Partitioning) are proposed. The efficiency of the algorithms is compared through several examples implemented on a cluster of SGI workstations. Two kinds of parallel approaches are used to compute multi-dimensional wavelet transforms on shared memory machines: homogeneous parallelism, and heterogeneous parallelism. Homogeneous parallelism uses traditional data partitioning while heterogeneous parallelism uses the CRBP approach. The effectiveness of these approaches is demonstrated through several examples implemented on an SGI Power Challenge. The paper discusses the effectiveness of each of the approaches on the two kinds of architectures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.