Abstract

We propose bulk duals for certain coarse-grained entropies of boundary regions. The `one-point entropy' is defined in the conformal field theory by maximizing the entropy in a domain of dependence while fixing the one-point functions. We conjecture that this is dual to the area of the edge of the region causally accessible to the domain of dependence (i.e. the `causal holographic information' of Hubeny and Rangamani). The `future one-point entropy' is defined by generalizing this conjecture to future domains of dependence and their corresponding bulk regions. We show that the future one-point entropy obeys a nontrivial second law. If our conjecture is true, this answers the question "What is the field theory dual of Hawking's area theorem?"

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.