Abstract

A mesoscopic or coarse-grained approach is presented to study thermo-capillary induced flows. An order parameter representation of a two-phase binary fluid is used in which the interfacial region separating the phases naturally occupies a transition zone of small width. The order parameter satisfies the Cahn–Hilliard equation with advective transport. A modified Navier–Stokes equation that incorporates an explicit coupling to the order parameter field governs fluid flow. It reduces, in the limit of an infinitely thin interface, to the Navier–Stokes equation within the bulk phases and to two interfacial forces: a normal capillary force proportional to the surface tension and the mean curvature of the surface, and a tangential force proportional to the tangential derivative of the surface tension. The method is illustrated in two cases: thermo-capillary migration of drops and phase separation via spinodal decomposition, both in an externally imposed temperature gradient.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.