Abstract

Coal ash deposition was numerically modeled on a GE-E3 high pressure turbine vane passage. A model was developed, in conjunction with Fluent™ software, to track individual particles through the turbine passage. Two sticking models were used to predict the rates of deposition which were subsequently compared to experimental trends. The strengths and limitations of the two sticking models, the critical viscosity model and the critical velocity model, are discussed. The former model ties deposition exclusively to particle temperature while the latter considers both the particle temperature and velocity. Both incorporate some level of empiricism, though the critical viscosity model has the potential to be more readily adaptable to different ash compositions. Experimental results show that both numerical models are reasonably accurate in predicting the initial stages of deposition. Beyond the initial stage of deposition, transient effects must be accounted for.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.