Abstract

AbstractDeveloping active, robust, and nonprecious electrocatalysts for the hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and oxygen reduction reaction (ORR) is highly crucial and challenging. In this work, a facile strategy is developed for scalable fabrication of dicobalt phosphide (Co2P)–cobalt nitride (CoN) core–shell nanoparticles with double active sites encapsulated in nitrogen‐doped carbon nanotubes (Co2P/CoN‐in‐NCNTs) by straight forward pyrolysis method. Both density functional theory calculation and experimental results reveal that pyrrole nitrogen coupled with Co2P is the most active one for HER, while Co–N–C active sites existing on the interfaces between CoN and N‐doped carbon shells are responsible for the ORR and OER activity in this catalyst. Furthermore, liquid‐state and all‐solid‐state Zn–air batteries are equipped. Co2P/CoN‐in‐NCNTs show high power density as high as 194.6 mW cm−2, high gravimetric energy density of 844.5 W h kg−1, very low charge–discharge polarization, and excellent reversibility of 96 h at 5 mA cm−2 in liquid system. Moreover, the Co2P/CoN‐in‐NCNTs profiles confirm excellent activity for water splitting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.