Abstract

Urea is an abundant nitrogen-containing compound found in urine of mammals and widely used in fertilizers. This compound is part of the nitrogen biogeochemical cycle and is easily biodegraded by ureolytic microorganisms that have the urease enzyme. Previous studies, with ureolytic isolates, have shown that some ureolytic microorganisms are able to sequester CO2 through a process called microbially-induced calcium carbonate precipitation. The present study investigates 15 ureolytic consortia obtained from the “Pamukkale travertines” and the “Cave Without A Name” using different growth media to identify the possible bacterial genera responsible for CO2 sequestration through the microbially-induced calcite precipitation (MICP). The community structure and diversity were determined by deep-sequencing. The results showed that all consortia presented varying CO2 sequestration capabilities and MICP rates. The CO2 sequestration varied between 0 and 86.4%, and it depended largely on the community structure, as well as on pH. Consortia with predominance of Comamonas, Plesiomonas and Oxalobacter presented reduced CO2 sequestration. On the other hand, consortia dominated by Sporosarcina, Sphingobacterium, Stenotrophomonas, Acinetobacter, and Elizabethkingia showed higher rates of CO2 uptake in the serum bottle headspace.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.