Abstract

This study deals with CO2 mass transfers and biomass conversion in an industrial horizontal tubular photobioreactor. An analytical approach is used to determine an expression modeling the influence of CO2 mass transfers on the overall biomass conversion efficiency for a given culture broth, heat and light conditions. Fluid mechanics and mass transfer are predicted with a classical two-phase flow approach (Taitel and Dukler, 1976) combined with a dissolution correlation developed and tested in the laboratory (Valiorgue et al., 2011). The influence of the stripping gas, removing the excess of oxygen in the liquid, on the conversion to biomass efficiency is shown to be not negligible. The expression is used to evaluate how the photobioreactor's design and process parameters can be tuned in order to improve biomass conversion efficiency. The biomass conversion efficiency evolution with the photobioreactor's length was found to behave asymptotically and it was explained by the relative orders of magnitude of gas dissolution and gas stripping. It has been shown that the gas flow rate for stripping and therefore the oxygen removal will be limited when further increasing the industrial photobioreactor's length for a given objective of CO2 conversion to biomass efficiency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.