Abstract
By doping 1%Ru/m-ZrO2 with sodium, selectivity tuning between CO and CH4 during CO2 hydrogenation was achieved by controlling the relative rates of reverse water-gas shift and CO methanation. By increasing basicity through Na loading: (1) the formate C-H bond is weakened in DRIFTS of adsorbed CO, accelerating C-H bond formation of formate and promoting CO formation at the Ru/m-ZrO2 interface; and (2) the coverage of Na increases on ensembles of Ru atoms responsible for methanation. Increasing Na content shifts selectivity from CH4 (useful for synthetic natural gas) to CO, which can be used for Fischer-Tropsch synthesis or methanol-to-gasoline. Electronic modification of formate is likely due to enhanced basicity (strengthening bonding between catalyst and the -CO2 function of formate and weakening C-H). No electron transfer from Na to Ru was detected in XANES. DRIFTS as a function of time and XPS results showed that Na exacerbates site blocking and deactivation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.