Abstract

AbstractUrban areas are responsible for a substantial proportion of anthropogenic carbon emissions around the world. As global populations increasingly reside in cities, the role of urban emissions in determining the future trajectory of carbon emissions is magnified. Consequently, a number of research efforts have been started in the United States and beyond, focusing on observing atmospheric carbon dioxide (CO2) and relating its variations to carbon emissions in cities. Because carbon emissions are intimately tied to socioeconomic activity through the combustion of fossil fuels, and many cities are actively adopting emission reduction plans, such urban carbon research efforts give rise to opportunities for stakeholder engagement and guidance on other environmental issues, such as air quality.This paper describes a research effort centered in the Salt Lake City, Utah, metropolitan region, which is the locus for one of the longest-running urban CO2 networks in the world. The Salt Lake City area provides a rich environment for studying anthropogenic emissions and for understanding the relationship between emissions and socioeconomic activity when the CO2 observations are enhanced with a) air quality observations, b) novel mobile observations from platforms on light-rail public transit trains and a news helicopter, c) dense meteorological observations, and d) modeling efforts that include atmospheric simulations and high-resolution emission inventories.Carbon dioxide and other atmospheric observations are presented, along with associated modeling work. Examples in which the work benefited from and contributed to the interests of multiple stakeholders (e.g., policymakers, air quality managers, municipal government, urban planners, industry, and the general public) are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.