Abstract

The initial stages of the gas-phase nucleation between CO2 and monoethanolamine were investigated via broadband rotational spectroscopy with the aid of extensive theoretical structure sampling. Sub-nanometer-scale aggregation patterns of monoethanolamine-(CO2 )n , n=1-4, were identified. An interesting competition between the monoethanolamine intramolecular hydrogen bond and the intermolecular interactions between monoethanolamine and CO2 upon cluster growth was discovered, revealing an intriguing CO2 binding priority to the hydroxyl group over the amine group. These findings are in sharp contrast to the general results for aqueous solutions. In the quinary complex, a cap-like CO2 tetramer was observed cooperatively surrounding the monoethanolamine. As the cluster approaches the critical size of new particle formation, the contribution of CO2 self-assembly to the overall stability increases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.