Abstract

Lithium-sulfur (Li-S) batteries have high theoretical energy density but low sulfur utilization due to the inherent insulating nature of sulfur and the shuttle effect of polysulfides. Herein, the CO2-activation carbon paper was prepared by poly(p-phenylenebenzobisoxazole) (PBO) nanofiber and was first applied as an interlayer for efficiently alleviating the shuttle effect of polysulfides in Li-S batteries. This interlayer exhibits good flexibility and strength with rich -C═O and -COOH functional groups on the three-dimensional porous structure, which improves chemical adsorption on Li2Sx species and ion rapid diffusion via interconnected diffusion channels and thus enhances the electrochemical kinetics. The initial specific capacity is 1367.4 mAh g-1 and remains 999.8 mAh g-1 after 200 cycles at 0.2C and 780.1 mAh g-1 at 5C, and the Coulombic efficiency is high, up to 99.8%, which is much better than that for the carbon paper without CO2 activation. The highly conductive flexible PBO carbon paper may bring breakthroughs in performance and thus lead to more practical applications of Li-S batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.