Abstract

Exploring stable clusters to understand structural evolution from atoms to macroscopic matter and to construct new materials is interesting yet challenging in chemistry. Utilizing our newly developed deep-ultraviolet laser ionization mass spectrometry technique, here we observe the reactions of neutral cobalt clusters with oxygen and find a very stable cluster species of Co13O8 that dominates the mass distribution in the presence of a large flow rate of oxygen gas. The results of global-minimum structural search reveal a unique cubic structure and distinctive stability of the neutral Co13O8 cluster that forms a new class of metal oxides that we named as ‘metalloxocubes’. Thermodynamics and kinetics calculations illustrate the structural evolution from icosahedral Co13 to the metalloxocube Co13O8 with decreased energy, enhanced stability and aromaticity. This class of neutral oxygen-passivated metal clusters may be an ideal candidate for genetic materials because of the cubic nature of the building blocks and the stability due to cubic aromaticity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.