Abstract

This study optimized the co-valorization of corn cob wastes (CCW) and dairy wastewater for simultaneous saccharification and lactic acid (LA) production (sDWW-SSF). Subsequently, the kinetics of Lactobacillus plantarum growth and LA production was assessed using the optimized conditions under microaerophilic (sDWW-SSFmicroaerophilic) and anaerobic (sDWW-SSFanaerobic) conditions, and thereafter compared to De Man, Rogosa and Sharpe (MRS) medium modified with pretreated CCW (mMRS-SSFmicroaerophilic). Optimized sDWW-SSF conditions produced maximum LA concentration and conversion of 11.15 ± 0.42 g/L and 18.90 ± 0.75%, respectively. Kinetic studies revealed that although the mMRS-SSFmicroaerophilic system obtained a higher maximum specific growth rate (μmax) and maximum potential LA concentration (Pm) compared to the wastewater-based bioprocesses, the data obtained for the latter were comparable when taking the resources and costs into consideration. These findings represent the potential to eliminate the use of valuable resources in lignocellulosic bioprocesses and provide insights on innovation towards driving a sustainable economy in line with the food-energy-water nexus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.