Abstract

This paper presents a co-salient object detection method to find common salient regions in a set of images. We utilize deep saliency networks to transfer co-saliency prior knowledge and better capture high-level semantic information. The resulting initial co-saliency maps are enhanced by seed propagation steps over an integrated graph. The deep saliency networks are trained in a supervised manner to avoid weakly supervised online learning and exploit them not only to extract high-level features but also to produce both intra- and inter-image saliency maps. Through a refinement step, the initial co-saliency maps can uniformly highlight co-salient regions and locate accurate object boundaries. To handle input image groups inconsistent in size, we propose to pool multi-regional descriptors including both within-segment and within-group information. In addition, the integrated multilayer graph is constructed to find the regions that the previous steps may not detect by seed propagation with low-level descriptors. In this paper, we utilize the useful complementary components of high- and low-level information and several learning-based steps. Our experiments have demonstrated that the proposed approach outperforms comparable co-saliency detection methods on widely used public databases and can also be directly applied to co-segmentation tasks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.