Abstract

To investigate co-pyrolysis properties and mechanisms of bamboo residues (BR) and disposable face mask (DFM), the blends of BR and DFM with mass ratios of 100%:0%, 95%:5%, 90%:10%, 85%:15%, 80%:20%, and 0%:100% were pyrolyzed using thermogravimetric analyzer coupled with a Fourier-transform infrared (TG-FTIR). Results showed that fundamental characteristics of BR and DFM were significantly different, although volatile matters were the main components of DFM (98.91%) and BR (79.63%). Higher heating value of BR (18.45 MJ/kg) was significantly lower than 45.54 MJ/kg of DFM. BR and DFM had one pyrolysis stage, while the blends owned two stages. Synergistic reaction occurred at the second pyrolysis stage, and BR promoted the pyrolysis of DFM. Gaseous products included H2O, CH4, CO2, CO, C=O, C–O–C, CH4, C=C, and C–H groups. KAS and FWO methods were suitable to calculate kinetic parameters. BR had the lowest activation energy of 216.13 kJ/mol while DFM had the highest 303.26 kJ/mol. The H-donor radicals of DFM volatiles enhanced the cracking of aromatic compounds in BR while suppressing cyclization and aromatization reactions contributed to the formation of char. The solid, liquid and gaseous products of co-pyrolysis could be used as fuels and chemicals to value-added utilize DFM. They have a potential for commercial development of future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.