Abstract
The valuable aroma compound piperonal with its vanilla‐like olfactory properties is of high interest for the fragrance and flavor industry. A lipoxygenase (LOXPsa1) of the basidiomycete Pleurotus sapidus was identified to convert piperine, the abundant pungent principle of black pepper (Piper nigrum), to piperonal and a second volatile product, 3,4‐methylenedioxycinnamaldehyde, with a vanilla‐like odor through an alkene cleavage. The reaction principle was co‐oxidation, as proven by its dependence on the presence of linoleic or α‐linolenic acid, common substrates of lipoxygenases. Optimization of the reaction conditions (substrate concentrations, reaction temperature and time) led to a 24‐fold and 15‐fold increase of the piperonal and 3,4‐methylenedioxycinnamaldehyde concentration using the recombinant enzyme. Monokaryotic strains showed different concentrations of and ratios between the two reaction products.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Chembiochem : a European journal of chemical biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.