Abstract

Photocatalytic CO2 reduction is a promising technology to resolve the greenhouse effect and energy crisis. In this work, a Co(OH)2 nanoparticle decorated CdS nanowire (Co(OH)2/CdS) based heterostructured photocatalyst was prepared via a solvothermal and subsequent co-precipitation method, and it was used for photocatalytic CO2 reduction. The optimal Co(OH)2/CdS photocatalyst achieves a CO production rate of 8.11 μmol g-1 h-1 under visible light irradiation (λ > 420 nm), which is about 2 times higher than that of bare CdS. The experimental results show that a Co(OH)2 cocatalyst possesses a great capability of consuming holes, which promotes the oxygen-producing half-reaction and accelerates charge separation, thus enhancing the CO2 photoreduction performance of CdS. Notably, without using complex synthesis processes, hazardous substances or expensive ingredients, Co(OH)2/CdS shows high light absorption, efficient charge separation and complete CO product selectivity. This work offers a new pathway for the construction of cost-effective photocatalytic materials to achieve highly efficient CO2 reduction activity by the integration of a Co(OH)2 cocatalyst.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.