Abstract
Time series prediction typically consists of a data reconstruction phase where the time series is broken into overlapping windows known as the timespan. The size of the timespan can be seen as a way of determining the extent of past information required for an effective prediction. In certain applications such as the prediction of wind-intensity of storms and cyclones, prediction models need to be dynamic in accommodating different values of the timespan. These applications require robust prediction as soon as the event takes place. We identify a new category of problem called dynamic time series prediction that requires a model to give prediction when presented with varying lengths of the timespan. In this paper, we propose a co-evolutionary multi-task learning method that provides a synergy between multi-task learning and co-evolutionary algorithms to address dynamic time series prediction. The method features effective use of building blocks of knowledge inspired by dynamic programming and multi-task learning. It enables neural networks to retain modularity during training for making a decision in situations even when certain inputs are missing. The effectiveness of the method is demonstrated using one-step-ahead chaotic time series and tropical cyclone wind-intensity prediction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.