Abstract

Photocatalytic CO2 reduction has been regarded as an ideal method to simulate photosynthesis for achieving carbon neutralization. However, poor charge transfer efficiency limits its development. Herein, an efficient Co/CoP@C catalyst was prepared with compact contact of Co and CoP layer by using MOF as precursor. At the interface of Co/CoP, the difference in functionality between the two phases may result in uneven distribution of electrons, thus forming a self-driven space-chare region. In this region, spontaneous electron transfer is guaranteed, thus facilitating the effective separation of photogenerated carriers as well as boosting the utilization of solar energy. Furthermore, the electron density of active site Co in CoP is increased and more active sites are exposed, which promotes the adsorption and activation of CO2 molecules. Together with suitable redox potential, low energy barrier for *COOH formation and easy desorption of CO, the reduction rate of CO2 catalyzed by Co/CoP@C is 4 times higher than that of CoP@C.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.