Abstract

Electrocatalysts with high activity toward oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are essential and desired for metal-air batteries, fuel cells, water-splitting and CO2 reduction. Here, a series of Co-CoxO/N-doped Carbon (NC) is developed as bifunctional electrocatalysts via the pyrolysis of a simple physical mixture of cobalt-based metal-organic framework (MOF) and carbon black (CB). The obtained electrocatalysts exhibit considerably enhanced bifunctional activity as compared to the pure MOF derived counterpart. The essential roles of added CB in boosting the bifunctional activity are investigated. With the addition of CB, the surface concentrations of active pyridinic-N and graphitic-N for ORR and the surface CoIII/CoII ratios for OER are increased. Furthermore, the charge transfer efficiency and the electrochemically active surface areas (ECSAs) are also enhanced for the resulting electrocatalyst. The optimized Co-CoO-Co3O4/NC exhibits excellent bifunctional activity and durability, surpassing the commercial 20 wt% Pt/C (for ORR) and IrO2 (for OER). When applied in an air electrode, the corresponding Zn-air battery with Co-CoO-Co3O4/NC presents the better performance than that with 20 wt% Pt/C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.