Abstract

Co-combustion of dyeing sludge (DS) and rice husk (RH) is a promising energy-from-waste method. The aim of this work was to investigate and quantify the effect of RH additive on combustion performance, gas evolution (especially gaseous pollutants) and kinetics during DS combustion by thermogravimetry-mass spectrometry method. Results revealed that the introduction of RH improved the combustibility, burnout performance and combustion stability of DS. Optimal RH addition (10% RH) reduced the emission of gaseous pollutants (NH3, NO2, COS, SO2 and CS2). The interaction between DS and RH inhibited the devolatilization reaction and emission of gaseous sulfur substances, and it also restrained NO2 emission under optimal RH additive amount. A four-interval kinetic model (D1 → F3 → D1 → F3) was established to describe the co-combustion process (R2 greater than 0.9999). RH addition, especially at high doses, led to an increase in activation energy relative to DS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.