Abstract

The co-channel interference for mobile users (MUs) of a public safety network (PSN) in the co-existence of heterogeneous networks such as unmanned aerial vehicles (UAVs) and LTE-based railway networks (LRNs) needs a thorough investigation, where UAVs are deployed as mobile base stations (BSs) for cell-edge coverage enhancement. Moreover, the LRN is employed for the train, and its control signal demands high reliability and low latency. It is necessary to provide higher priority to LRN users when allocating resources from shared radio access channels (RACs). By considering both sharing and non-sharing of RACs, co-channel interference was analyzed in the downlink network of the PSN, UAV, and LRN. By offloading more PSN MUs to the LRN or UAVs, the resource utilization of the LRN and UAV BSs was enhanced. In this paper, we aimed to adopt deep-learning (DL)-based enhanced inter-cell interference coordination (eICIC) and further enhanced ICIC (FeICIC) strategies to deal with the interference from the PSN to the LRN and UAVs. Moreover, a DL-based coordinated multipoint (CoMP) for coordinated scheduling technique was utilized along with FeICIC and eICIC to enhance the performance of PSN MUs. In the simulation results, the performance of DL-based interference management was compared with simple eICI, FeICIC, and coordinated scheduling CoMP. The DL-based FeICIC and CoMP for coordinated scheduling performed best with shared RACs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.