Abstract

Reactions between small group 6 transition metal suboxide clusters, M(x)O(y)(-) (M = (98)Mo or (186)W; x = 1-4; y < or = 3x) and both CO(2) and CO were studied in gas phase using mass spectrometric analysis of high-pressure, fast flow reaction products. Both Mo(2)O(y)(-) and W(2)O(y)(-) show evidence of sequential oxidation by CO(2) of the form, M(2)O(y)(-)+CO(2)-->M(2)O(y+1)(-)+CO for the more reduced species. Similar evidence is observed for the trimetallic clusters, although Mo(3)O(6)(-) appears uniquely unreactive. Lower mass resolution in the M(4)O(y)(-) range precludes definitive product mass assignments, but intensity patterns suggest the continued trend of sequential oxidation of the more reduced end of the M(4)O(y)(-) oxide series. Based on thermodynamic arguments, cluster oxidation by CO(2) is possible if D(0)(O-Mo(x)O(y)(-)) > 5.45 eV. Although simple bond energy analysis suggests that tungsten oxides may be more reactive toward CO(2) compared to molybdenum oxides, this is not born out experimentally, suggesting that the activation barrier for the reduction of CO(2) by tungsten suboxide clusters is very high compared to analogous molybdenum suboxide clusters. In reactions with CO, suboxides of both metal-based oxides show CO addition, with the product distribution being more diverse for Mo(x)O(y)(-) than for W(x)O(y)(-). No evidence of cluster reduction by CO is observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.