Abstract

CO 2 is one of the few non-toxic and non-flammable working fluids that do not contribute to ozone depletion or global warming, if leaked to the atmosphere. Tap water heating is one promising application for a trans-critical CO 2 process. The temperature glide at heat rejection contributes to a very good temperature adaptation when heating tap water, which inherits a large temperature glide. This, together with efficient compression and good heat transfer characteristics of CO 2, makes it possible to design very efficient systems. A heating-COP of 4.3 is achieved for the prototype when heating tap water from 9°C to 60°C, at an evaporation temperature of 0°C. The results lead to a seasonal performance factor of about 4 for an Oslo climate, using ambient air as heat source. Thus, the primary energy consumption can be reduced with more than 75% compared with electrical or gas fired systems. Another significant advantage of this system, compared with conventional heat pump water heaters, is that hot water with temperatures up to 90°C can be produced without operational difficulties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.