Abstract

NSCs play an essential role in the regeneration process of the central nervous system. However, due to the influence of the harsh pathological microenvironment, the viability of neural stem cells is limited, and the therapeutic effect needs improvement. Previous studies have found that stem cells overexpressing ciliary neurotrophic factor (CNTF) have apparent therapeutic effects on remyelination, but the specific mechanism of action still needs to be further explored. We found that astrocytes, the most numerous groups in the CNS, exhibited a pathological role in the experimental autoimmune encephalomyelitis model, but after stimulation with CNTF-NSCs, a phenotypic switch occurred and induced the neurotrophic factor cardiotrophin-like cytokine 1 (Clcf1) production. Mechanistically, Clcf1 can significantly promote the differentiation of oligodendrocyte precursor cells (OPCs), and the advanced effect can attenuate by the Clcf1 antibody. Therefore, this study was conducted to investigate the pathway by which CNTF-NSCs exert their therapeutic effects by affecting astrocytes. It is expected to identify a potential therapeutic factor, Clcf1, for the treatment of demyelinating diseases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.