Abstract

In the CMS experiment at the LHC proton–proton collider, a key role will be played by the muon system that is embedded inside the iron yoke used to close the magnetic flux of the CMS solenoid. The muon system of the CMS experiment performs three main tasks: triggering of muons, identifying muons, and assisting the central tracker in order to measure the momentum and charge of high-pt muons in the pseudorapidity region | η | ≤ 2.4 . The system is composed by a central barrel and two closing endcaps. Three independent technologies are used to reconstruct and trigger muons: Drift Tubes (DT) in the barrel, Cathode Strips Chambers (CSC) in the endcaps and Resistive Plate Chambers (RPC) in both barrel and endcap regions. All the detectors will contribute to the tracking and triggering of muons. Towards the end of 2008 and in 2009 the CMS experiment was commissioned with many millions of cosmic rays. These data have been fundamental to check the performance of the three sub-detectors and of the trigger response. In this paper the results in terms of the detection and trigger performance at the level of each sub-detector and at the level of the full muon system will be reported.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.