Abstract

There have been several recent proposals modifying Hadoop, radically changing the storage organization or query processing techniques to obtain good performance for structured data processing. We will showcase Clydesdale, a research prototype for structured data processing on Hadoop that can achieve dramatic performance improvements over existing solutions, without any changes to the underlying MapReduce implementation. Clydesdale achieves this through a novel synthesis of several techniques from the database literature and carefully adapting them to the Hadoop environment. On the star schema benchmark, we show that Clydesdale is on average 38x faster than Hive, the dominant approach for structured data processing on Hadoop today. To the best of our knowledge, Clydesdale is the fastest solution for processing workloads on structured data sets that fit a star schema on Hadoop. Attendees will be able to run queries on the data from the star schema benchmark on a remote Hadoop cluster with Clydesdale and Hive installed, and get a breakdown of the time taken to execute the query. Attendees will also be able to pose their own queries using ClyQL -- a novel embedded DSL in Scala that can be used to rapidly prototype star join queries. With this demonstration, we hope to convince the attendees that unlike previously thought, Hadoop can indeed efficiently support structured data processing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.