Abstract
AbstractDrifters designed to mimic floating marine debris and small patches of pelagic Sargassum were satellite tracked in four regions across the North Atlantic. Though subjected to the same initial conditions at each site, the tracks of different drifters quickly diverged after deployment. We explain the clustering of drifter types using a recent Maxey‐Riley theory for surface ocean inertial particle dynamics applied on multidata‐based mesoscale ocean currents and winds from reanalysis. Simulated trajectories of objects at the air‐sea interface are significantly improved when represented as inertial (accounting for buoyancy and size), rather than as perfectly Lagrangian (fluid following) particles. Separation distances between simulated and observed trajectories were substantially smaller for debris‐like drifters than for Sargassum‐like drifters, suggesting that additional consideration of its physical properties relative to fluid velocities may be useful. Our findings can be applied to model variability in movements and distribution of diverse objects floating at the ocean surface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.